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Abstract This paper presents an argumentation framework for reasoning and man-
agement in (inconsistent or incoherent) description logic ontologies which contain
conflicts. First, a new argumentation framework obtained by combining Besnard
and Hunter’s framework with binary argumentation is introduced to frame the
inner relation over axioms in an ontology. A dialogue mechanism, based on this
framework, is then presented to derive meaningful consequences from inconsistent
ontologies. Three novel operators are developed to repair those axioms or assertions
which cause inconsistency or incoherency of ontologies by using this framework.
Within this framework, an inconsistency is neither directly assigned a contradictory
value nor roughly removed but further analyzed and evaluated. Because of this,
reasoning within it satisfies some important logical properties such as consistency-
preserving and justifiability. Moreover, it provides an alternative scenario for main-
taining consistency and coherency of ontologies with giving consideration to both
semantics and syntax. Thus the repaired results by using the proposed framework
not only keep the closer semantics but also preserve the syntactic structure of original
ontologies.
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1 Introduction

In computer science, an ontology is a formal representation of the knowledge about
(some aspect of) the world by a set of concepts within a domain and the relationships
between those concepts; it introduces vocabulary describing various aspects of
the domain being modeled, and provides an explicit specification of the intended
meaning of the vocabulary (Horrocks 2008). Ontologies are widely used to represent
knowledge in the Semantic Web (Berners-Lee et al. 2001), which is conceived as
a future generation of the World Wide Web (WWW) by defining the meaning
(semantics) of information and services on the Web in order to make it possible
for the computer programs to process and use the Web content (Berners-Lee et al.
2001). The Web Ontology Language (OWL) is proved to be a highly successful class
of knowledge representation languages to represent ontologies in the Semantic Web
(Berners-Lee et al. 2001). Description logics (DLs), as fragments of f irst-order logic
(FOL), are the logical foundation of OWL (Baader et al. 2003). Compared with
propositional logic (PL), there are more expressive decision problems which can be
solved by many DL reasoning engines/algorithms. However, we have to live with
the fact that ontologies in a real world might be rarely perfect since the Semantic
Web is an open, constantly changing and collaborative environment. Many reasons,
such as modeling errors, migration from other formalisms, knowledge integration,
knowledge merging and knowledge evolution, potentially bring ontologies with
conflicts (Meyer et al. 2005; Bertossi et al. 2005; Kalyanpur et al. 2006a; Odintsov and
Wansing 2008). For example, during the recent development of an OWL ontology
at NASA’s Jet Propulsion Laboratory, the class “OceanCrustLayer” was found to
be inconsistent (Horrocks 2008). Engineers discovered (with the help of debugging
tools) that the class was defined as both a region and a layer, one of which (layer)
was a 2-dimensional object and the other a 3-dimensional object. The inconsistency
thus highlighted a fundamental error in the ontology’s design. Then it is unrealistic to
expect that real ontologies are always logically consistent. Unfortunately, DLs break
down in the presence of contradictory knowledge in ontologies.

As a result, the issue of handling DL ontologies with conflicts has attracted much
attention in the Semantic Web community.

This issue has been researched from two main directions: the first, based on the
assumption that inconsistency is treated as a natural phenomenon in realistic data, is
applying a non-standard inference to avoid the explosive entailment and the second,
based on the assumption that inconsistent information indicates erroneous data, is
removing those axioms which cause conflicts from ontologies to maintain consistency
and coherency of ontologies. The first is a topic of inconsistency-tolerant reasoning
(Odintsov and Wansing 2008) and the second is a key task of ontology management
(Davies et al. 2009).

There are some existing approaches (Schlobach and Cornet 2003; Huang et al.
2005; Qi and Du 2009; Patel-Schneider 1989; Ma et al. 2007; Odintsov and Wansing
2008; Zhang et al. 2009, 2010; Zhang and Lin 2012) to avoid the explosive entailment
in reasoning with inconsistent ontologies. The main idea of those approaches is
to make the inference rule “ex falso quodlibet: {⊥(a)} � φ or {� � ⊥} |= φ where
a is an arbitrary individual and φ is an arbitrary axiom” invalid to obtain some
meaningful information from an inconsistent ontology. They are also based on two
fundamentally different strategies. One is forbidding some axioms which possibly
cause inconsistency to be used in reasoning with sub-ontologies of an ontology
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(Schlobach and Cornet 2003; Huang et al. 2005; Qi and Du 2009). However, based on
this strategy, we might lose some potentially meaningful consequents from ontologies
since sub-ontologies are hard to capture the whole ontology. The other is introducing
non-classical semantics to provide non-standard inferences to tolerate inconsistency
(Patel-Schneider 1989; Ma et al. 2007; Odintsov and Wansing 2008; Zhang et al.
2009, 2010; Zhang and Lin 2012). The main idea of current proposals is using multi-
valued inference. However, the inference power of them is much weaker than that
of the standard inference, even for consistent ontologies. For instance, four-valued
entailment (an inclusion relation between four-valued models of a set of axioms and
four-valued models of an axiom) (Patel-Schneider 1989; Ma et al. 2007; Odintsov
and Wansing 2008) and three-valued entailment (an inclusion relation between
three-valued models of a set of axioms and three-valued models of an axiom)
(Zhang et al. 2010) do not satisfy all three basic inference rules, namely, modus
ponens: {C(a), C � D} |= D(a), disjunctive syllogism: {¬C(a), C � D} |= D(a) and
modus tollens: {¬D(a), C � D} |= ¬C(a). Quasi-classical entailment (an inclusion
relation between strong models of a set of axioms and weak models of an axiom)
(Zhang et al. 2009; Zhang and Lin 2012) do not satisfy the law of excluded middle:
O |= �(a) (where O is an arbitrary ontology). Indeed, they have a common weakness
that inconsistencies are not further analyzed in-depth but either isolated even being
discarded to maintain maximal consistency or ignored by evaluating a contradictory
value “B” (i.e., both true and false). In this sense, they look rough in treating
inconsistencies.

On the other hand, there are some approaches to eliminate conflicts to maintain
consistency and coherency of DL ontologies (Schlobach 2005; Meyer et al. 2006;
Kalyanpur et al. 2006b; Du and Shen 2008; Qi and Du 2009; Ji et al. 2009; Wang
et al. 2010). Those traditional approaches to maintaining coherency and consistency
of DL ontologies are almost based on syntactical modification (Schlobach 2005;
Meyer et al. 2006; Kalyanpur et al. 2006b; Du and Shen 2008). Though these syntax-
based approaches obey the principle of minimal modification in syntax, they might
hardly preserve the semantics of original ontologies. Recently, some model-based
approaches are proposed to eliminate conflicts between two DL ontologies (where
one (called the old) is to be revised by the other (called the new) (Qi and Du 2009;
Ji et al. 2009; Wang et al. 2010). The main idea of them is to select those models,
which are the closest to models of the new, from models of the old as the candidate
models of revised ontologies which are obtained by using the new to revise the old.
However, a revision problem always involves two ontologies, which is not the case
for inconsistency repair (resolution) in general.

To address this problem, in this paper, we will propose a novel approach based
on argumentation framework to reason with and manage DL ontologies. The first
version of argumentation framework is proposed by Dung (1995b) (we call Dung’s
framework) in order to provide a proof-theoretic semantics for nonmonotonic logic
so that some faithful conclusions could be inferred from knowledge bases with
conflicts by applying the dialogue mechanism. Indeed, Dung’s framework is in a
graph-based frame where each node is an argument and the set of edges describes
an “attack” relation between arguments. Based on Dung’s framework, Besnard and
Hunter (2001) (we abbreviate the framework proposed by them to BH’s framework)
presented a tree-based argumentation framework for propositional knowledge bases
with preserving the terminability of arguing processes. In this sense, BH’s argumen-
tation framework could be taken as an instantiation of Dung’s framework.
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As an alternative scenario, based on BH’s framework, this paper presents an argu-
mentation framework to manage and reason with DL ontologies with conflicts.
However, it is not straightforward to generalize BH’s framework to DLs because
the attack relation over DL ontologies should capture not only inconsistency but
also incoherency which is not viewed as a conflict in PL. Moreover, though this tree-
based framework for PL can be feasibly obtained, for DL ontologies, it might be not
always constructed since a DL ontology can have infinite number of models and some
model can also be infinite. Additionally, the deduction relation in defining arguments
can no longer work since the DL syntactic constructors connect not axioms but DL
concepts and roles.

This paper presents an argumentation framework for ALC ontologies and, within
this framework, some novel approaches are developed to reason with and manage
inconsistent or incoherent ontologies. This paper is a revised and extended version
of previous proceedings of DL 2009 and CAAI 2010. We select ALC because ALC is
a basic member of DL family. The main innovations and contributions of this paper
can be summarized as follows:

– Introducing an argumentation framework for DL ontologies by modifying BH’s
argumentation to capture kinds of conflicts, namely incoherencies and inconsis-
tencies. Firstly, we introduce arguments, undercuts, conservative relation over
undercuts. Then argument trees for axioms are built in canonical undercuts by
using some expansion rules. Finally, this framework for an axiom is a pair of
argument trees for and against the axiom.

– Presenting an argumentative entailment relationship between an ontology and an
axiom within argumentation framework. We can show that the argumentative entail-
ment is not only non-explosive but also satisfying some important logical properties
such as justifiability, consistency-preserving, nonmonotonicity and splitting property.

– Developing three argumentative operators (a normal operator and the other
two approximative operators) to maintain coherency and consistency of ALC
ontologies. We show that the argumentative operator could maintain consistency
of ontologies by removing all redundant axioms which could not be justified from
original ontologies. Such a scenario satisfies a property of justifiability, that is,
each axiom of a repaired ontology could be self-protected. Additionally, such
two approximative operators enrich the repaired ontologies by adding potentially
justifiable axioms. For some users, the approximative repairs are suitable for
application in providing them with many choices.

The rest of this paper is organized as follows. Section 2 reviews briefly the syntax
and semantics of ALC. Section 3 defines argumentation framework for ontologies.
Section 4 discusses using argumentation framework to reason with inconsistent
ontologies and Section 5 considers using argumentation framework to manage
ontologies. Section 6 discusses two practical ontologies as experiments. Section 7
compares our scenario with existing proposals. In the last section, we summarize our
work and discuss the future work.

2 Description logic ALC

Description logic (DL) is a well-known family of knowledge representation for-
malisms. For more comprehensive background knowledge, we refer the reader to
Chapter 2 of the DL Handbook (Baader et al. 2003).
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DLs are fragments of FOL. That is, they can be translated into FOL. They are
different from their predecessors such as semantic networks and frames since they
are equipped with a formal, logic-based semantics. In DLs, elementary descriptions
are concept names (unary predicates) and role names (binary predicates). Complex
descriptions are built from them inductively using concept and role constructors
provided by the particular DLs under consideration.

In this paper, we consider the DL ALC which is a simple yet relatively ex-
pressive DL, where AL is the abbreviation of attributive language and C denotes
“complement”. Let NC and NR be pairwise disjoint and countably infinite sets of
concept names and role names respectively. Let NI be an infinite set of individual
names. A signature is a finite set � = NC ∪ NR ∪ NI . We use the letters A and B for
concept names, the letter R for role names, and the letters C and D for concepts. �
and ⊥ denote the universal concept and the bottom concept respectively. The set of
ALC concepts is the smallest set such that:

– every concept name is a concept;
– if C and D are concepts, R is a role name, then the following expressions are also

concepts: ¬C (full negation), C�D (concept conjunction), C�D (concept disjunc-
tion), ∀R.C (value restriction on role names) and ∃R.C (existential restriction on
role names).

For example, the concept description Person � Female is an ALC-concept de-
scribing those persons that are female. Suppose hasChild is a role name, the concept
description Person � ∀hasChild.Female expresses those persons whose children are
all female. The concept ∀hasChild.⊥ � Person describes those persons who have no
children.

An interpretation I = (�I, ·I) consists of a non-empty domain �I and a mapping
·I , which maps every concept to a subset of �I , every role to a subset of �I ×�I ,
and for all concepts C, D, role R, satisfies the following equations:

�I = �I

⊥I = ∅I
(¬C)I = �I \ CI

(C � D)I = CI ∩ DI

(C � D)I = CI ∪ DI

(∃R.C)I = {
x | ∃y, (x, y) ∈ RI and y ∈ CI}

(∀R.C)I = {
x | ∀y, (x, y) ∈ RI implies y ∈ CI}

A general concept inclusion axiom (GCI) or a (terminological) axiom is an
inclusion statement of the forms C�D, where C and D are two (possibly complex)
concepts (concepts, for short). It is the statement about how concepts are related
to each other. We use C ≡ D as an abbreviation for the symmetrical pair of GCIs
C � D and D � C, called a concept equivalence. An interpretation I validates a GCI
C�D if CI⊆DI , and it satisfies a GCI C ≡ D if and only if CI = DI . A finite set
of GCIs is called a TBox or terminology. We can also formulate statements about
individuals. A concept (role) assertion has the form C(a) (R(a, b)), where C is a
concept, R a role name, and a, b individual names. An ABox consists of a finite
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set of concept assertions and role assertions. In an ABox, one describes a specific
state of affairs of an application domain in terms of concepts and roles.

To give a semantics to ABoxes, we need to extend interpretations to individ-
ual names. For each individual name a, ·I maps it to an element aI ∈ �I . An
interpretation I satisfies a concept assertion C(a) if aI∈CI , and it satisfies a role
assertion R(a, b) if (aI, bI)∈RI . GCIs, concept assertions and role assertions are
called axioms. An interpretation I is a model of a DL axiom if it satisfies this axiom.

An ontology O consists of a TBox and an ABox. The signature of an ontology O,
denoted by Sig(O), is a set of all concept names, role names and individual names
occurring in O. A sub-ontology O′ of ontology O is an ontology whose axioms and
assertions are in O, also denoted by O′ ⊆ O (In this paper, we treat an ontology as a
set of axioms). And O′ is a proper sub-ontology of O if O′ ⊆ O and O �⊆ O′.

An interpretation I is a model of an ontology O if it satisfies every axiom in
O. Let Mod(O) be a set of all models of O. An ontology O is consistent if there
exists a model of O, that is, Mod(O) �= ∅. An ABox A is consistent with respect to
a TBox T if there exists a common model of T and A. Given an ontology O and a
DL axiom φ, we say O entails φ, denoted by O |= φ, if every model of O is a model
of φ, that is, Mod(O) ⊆ Mod({φ}). Furthermore, given two ontologies O1 and O2,
we say O1 entails O2, denoted by O1 |= O2, if every model of O1 is a model of O2,
that is, Mod(O1) ⊆ Mod(O2). O1 is equivalent to O2 if O1 |= O2 and O2 |= O1, that
is, Mod(O1) = Mod(O2). A concept C is satisf iable with respect to a TBox T if there
exists a model I of T such that CI �= ∅; and unsatisf iable otherwise. A TBox T is
incoherent if there exists an unsatisfiable concept name in T ; and coherent otherwise.
Consistency and coherency are two important properties of DL ontologies.

3 Argumentation framework for description logic ontologies

This section starts to introduce an argumentation framework in ALC based on
BH’s argumentation framework and binary argumentation. This adaption of BH’s
framework to DL is not trivial. For DL ontologies, there are two kinds of conflicts,
namely, incoherency and inconsistency, while the inconsistency is the only one kind
of conflicts occurring in PL ontologies or FOL ontologies. Moreover, DL syntax
constructors (�,�, ∀, ∃) do not connect axioms but concepts or roles. That is, the
syntactic structure of axioms need to be considered in the definition of argumentation
framework. Another challenge of this adaption is constructing an argument tree,
which is the core element of this framework, since the method of spanning argument
trees in PL or FOL is not always feasible in DL.

3.1 Arguments in description logic ALC

First, we present some basic definitions of arguments in ALC and discuss some
primary properties in this subsection. Let L be a language of ALC. We use α, β, γ, . . .

to denote axioms, O, �, 	, . . . to denote sets of axioms. O is finite if the number of
axioms in O is finite. In this paper, we mainly consider finite ontologies.

Following from argumentation in propositional logic (Besnard and Hunter 2001),
an argument for an axiom φ is a pair 〈�, φ〉 satisfying the following three conditions:

1. � is a sub-ontology of O;
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2. � is consistent and coherent;
3. � |= φ; and there is no �′ which is a sub-ontology of � such that �′ |= φ.

If A = 〈�, φ〉 is an argument, we say that A is an argument for φ in O and we also
say that � supports φ. Without causing any confusion, we briefly say arguments. In
addition, we call � the support of A and φ the consequent of A. Sup(A) = � and
Con(A) = φ.

Intuitively, the support of an argument for an axiom is a minimal prime implicate
(see Bienvenu 2008) of it which is consistent and coherent.

To capture arguments for conjunction of DL axioms, we need an extended notion
of “arguments for a set of axioms” since there exists not always a DL axiom to express
a set of DL axioms, contrary to PL formulas.

Definition 1 Let 	 be a set of axioms. An argument for 	 is a pair 〈�, 	〉 such that �

is a consistent and coherent sub-ontology of O which � |= 	 and there is no �′ which
is a sub-ontology of � such that �′ |= 	. Let Arg(O) be the set of all arguments
whose support are in O.

The support and consequent are analogously defined. For instance, 〈�, 	〉 where
� = {R(a, b)} and 	 = {∃R.�(a), ∃R−.�(b)} is an argument for 	.

The notion of arguments for an axiom is a special case of the notion of arguments
for a set of axioms. In this sense, we also use 〈�, {φ}〉 to denote 〈�, φ〉.

Given two arguments A′ and A′′, A′ is equal to A′′, denoted by A′ = A′′, if
Sup(A′) = Sup(A′′) and Con(A′) = Con(A′′).

For any non-empty ontologyO, we say 〈{φ}, {φ}〉 for any φ ∈ O is a basic argument.
A trivial argument is in form of 〈∅, ϒ〉 where ϒ is a set of some tautologies.

Example 1 Let O1 = (T1,A1) be an ontology where T1 = {Penguin � Bird,
Bird � Fly, Penguin � ¬Fly, DegradedBird � ¬Fly, Swallow � Bird,
Penguin � ∃hasFood.Fish, Swallow � ¬Penguin} and A1 = {Penguin(tweety),
DegradedBird(tweety), Swallow(slikken)}. From O1, Ontology O tells us as follows:
penguins are birds; birds can fly; penguins cannot fly; degraded birds can not fly;
swallows are birds; penguins eat some fish; swallows are not penguins; tweety is a
penguin; tweety is a degraded bird; and slikken is a swallow.

Some of the arguments are as follows: let t be the acronym of “tweety” and s the
acronym of “slikken”,

A1 = 〈{Penguin(t)}, {Penguin(t)}〉
A2 = 〈{Swallow(s)}, {Swallow(s)}〉
A3 = 〈{Penguin(t), Penguin � Bird}, {Bird(t)}〉
A4 = 〈{Swallow(s), Swallow � Bird}, {Bird(s)}〉
A5 = 〈{Penguin(t), Penguin � ¬Fly}, {Penguin(t),¬Fly(t)}〉
A6 = 〈{DegradedBird(t), DegradedBird � ¬Fly}, {¬Fly(t)}〉
A7 = 〈{Penguin(t), Penguin � Bird, Bird � Fly}, {Fly(t)}〉
A8 = 〈{Penguin(t), Penguin � Bird, Bird � Fly}, {Penguin(t), Fly(t)}〉
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A9 = 〈{Penguin � Bird}, {Penguin � Bird}〉
A10 = 〈{Bird � Fly}, {Bird � Fly}〉
A11 = 〈{Penguin � ¬Fly}, {Penguin � ¬Fly}〉
A12 = 〈{Penguin � Bird, Bird � Fly}, {Penguin � Fly}〉
A13 = 〈{Penguin(t), Penguin � ∃hasFood.Fish}, {∃hasFood.Fish(t)}〉
A14 = 〈{Penguin(t), Swallow(s), Swallow � ¬Penguin},

{¬Swallow(t),¬Penguin(s)}〉

In Example 1, A1, A2, A9, A10 and A11 are basic arguments. Note that each
arguments Ai except for A5, A8 and A14 is indeed an argument for an axiom. The
consequent of A14 can not be represented by a DL axiom.

Arguments often interrelate with each other. In Example 1, the consequents of
both A5 and A6 are identical and the supports of both A7 and A8 are identical.
Besides, the union of consequents of both A5 and A7 is inconsistent and the union of
both the support of A11 and the consequent of A12.

Next, we introduce another relationship to capture a relation that arguments
“attack” each other (Dung 1995b).

Definition 2 Let O be an ontology. Given two arguments in O A = 〈�, 	〉 and A′ =
〈�′, 	 ′〉, A′ is an undercut of A if and only if 	 ′ ∪� is inconsistent or incoherent. Let
Undercuts(O, A) be the set of all undercuts of A in O.

Intuitively, the undercut of an argument is against the argument. In this sense,
the consequent of its undercut invalidates the support of it, that is, the union of the
consequent and the support is inconsistent or incoherent.

In Example 1, A7, A8 are undercuts of both A5 and A6 which are also undercuts
of A7, A8. A11 is an undercut of A12 and A12 is an undercut of A12.

However, it is not always true that for any arguments A and A′, if A′ is an undercut
of A then A is an undercut of A′. For instance, two arguments A = 〈{A(a), A �
B}, {B(a)}〉 and A′ = 〈{C(a), C � ¬A}, {¬A(a)}〉. We find that A′ is an undercut of
A while A is not an undercut of A′

Next result shows that if an ontology is inconsistent or incoherent, then there exists
some undercuts of some arguments.

Proposition 1 Let O be an ontology and A = 〈�′, 	 ′〉 an argument. If �′′ is a consis-
tent and coherent sub-ontology of O such that �′ ∪�′′ is inconsistent or incoherent,
then Undercuts(A) �= ∅, that is, there exists an undercut Au of A.

Proof To prove it, we only need to construct such an undercut Au. If �′ ∪�′′ is
inconsistent or incoherent then there exists a set of axioms 	 ′′ such that �′′ |= 	 ′′
and �′ ∪	 ′′ is inconsistent or incoherent. Then there exists a minimal sub-ontology
�(3) ⊆ �′′ such that �(3) |= 	 ′′. Let Au = 〈�(3), 	 ′′〉. Thus Au is an undercut of A. ��

Proposition 1 also provides a way to compute undercuts of a given argument.



www.manaraa.com

J Intell Inf Syst (2013) 40:375–403 383

Undercut is a basic notion in defining BH’s framework (Besnard and Hunter
2001). This framework is built on argument trees where arguments are taken as nodes
and each edge 〈Au, A〉means that Au “attacks” A (i.e., Au is an undercut of A here).

A challenge of adapting BH’s framework for ALC ontologies is that argument
trees based on undercuts become infinite since the number of models of some ALC
ontologies is infinite. For instance, let O = ({A � ∃R.A}, {A(a)}), we find that the
number of models of O is infinite (see Baader et al. 2003; Calvanese 1996).

To address this challenge, it is necessary to investigate how to select finite number
of undercuts to represent all undercuts of an argument.

Firstly, we show that undercuts of an argument mainly depend on the support of
the argument what they “attack”.

Proposition 2 Let O be an ontology and A′, A′′ two arguments. If Sup(A′) ⊆
Sup(A′′) then Undercuts(O, A′) ⊆ Undercuts(O, A′′), that is, for any argument Au,
if Au is an undercut of A′ then A is an undercut of A′′.

Proof Because Sup(A′) ⊆ Sup(A′′), for any argument Au, if Au is an undercut of
A′ then Con(Au) ∪ Sup(A′) is inconsistent or incoherent by Definition 2. Because
Sup(A′) ⊆ Sup(A′′), Con(Au) ∪ Sup(A′′) is inconsistent or incoherent. Then Au is an
undercut of A′′ by Definition 2. Therefore, Undercuts(O, A′) ⊆ Undercuts(O, A′′).

��

We then consider how an argument encompasses the other by using the inclusion
relation between supports.

Definition 3 Let A, A′ be two arguments. We say A′ encompasses A, denoted by
A �e A′, if Sup(A) ⊆ Sup(A′). A′ strictly encompasses A, denoted by A ≺e A′ if
Sup(A) ⊆ Sup(A′) but Sup(A′) �⊆ Sup(A).

Note that the encompass relation is a partially preferential relation between two
arguments. The encompass relation �e (≺e) is transitive. That is, A �e A′ and A′ �e

A′′ implies A �e A′′.
In Example 1, A1 ≺e A3, A3 ≺e A7, A9 ≺e A3, A11 ≺e A5, A2 ≺e A14.
In fact, all basic arguments only encompass trivial arguments. Let A be a basic

argument. If there exists an argument A′ such that A′ ≺e A then A′ is a trivial
argument, that is, Sup(A′) = ∅.

Given an argument, we can introduce the encompass relation over its undercuts
since each undercut is an argument. We say those undercuts which are not encom-
passed by any other undercuts minimally encompass undercuts formally defined as
follows:

Definition 4 Let O be an ontology and A an argument. A minimally encompass
undercut (MEU, for short) Au of A is an undercut of A and there exists no undercut
A′u of A such that Au ≺e A′u. We use MEU(O, A) to denote the set of all MEUs of
A in O.

Intuitively, MEUs are undercuts whose supports are minimal sub-ontologies (i.e.,
they contain minimal number of axioms). In Example 1, A5 and A6 are MEUs of
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both A7 and A8. A7 and A8 are MEUs of both A5 and A6. A11 is a MEU of A12 and
A12 is a MEU of A11.

MEUs with different supports are incomparable with each other.

Proposition 3 Let O be an ontology and A an argument. For any two arguments
A′u, A′′u ∈ MEU(O, A), if Sup(A′u) �= Sup(A′′u) then A′u ��e A′′u and A′′u ��e A′u.

Proof We have that neither Sup(A′u) ⊆ Sup(A′′u) nor Sup(A′′u) ⊆ Sup(A′u) by
Definition 4 since Sup(A′u) �= Sup(A′′u). Thus A′u ��e A′′u and A′′u ��e A′u by
Definition 3. ��

In Example 1, A5, A6 are incomparable with each other.
There exist multiple different MEUs with the same support since multiple con-

sequents can be brought by a support. In Example 1, A7 and A8 are two different
MEUs of A5 while Sup(A7) = Sup(A8).

Proposition 2 still holds by considering MEUs instead of undercuts.

Proposition 4 Let O be an ontology and A′, A′′ two arguments. If Sup(A′) ⊆
Sup(A′′) then MEU(O, A′) ⊆ MEU(O, A′′), that is, for any argument Au, Au is a
MEU of A′ if and only if A is a MEU of A′′.

Proof Because Sup(A′) = Sup(A′′), Undercuts(O, A′) ⊆ Undercuts(O, A′′) by
Proposition 4. Then MEU(O, A′) ⊆ MEU(O, A′′) by Definition 4. ��

Two arguments with the same support have the same MEUs. In this sense,
supports can be used to partition all MEUs of some argument into some classes.

Formally, let O be an ontology and A an argument in O, given a sub-ontology �,
we denote

Argu(O, A,�) = {Au | Sup(Au) = � and Au ∈ MEU(O, A)}
�u(O, A) = {� ∈ O | Argu(O, A,�) �= ∅}

We say Argu(O, A,�) is a class of MEU(O, A) w.r.t. � and �u(O, A) is a partition
of MEU(O, A).

In Example 1, A7 and A8 belong to the class Argu(O1, A5,�) where � = Sup(A7).
Given a finite ontology O, though | Argu(O, A,�) | is possibly infinite while |

Arg(O,�) | is always finite since �u(O, A) ⊆ 2O where 2O is the power set of O,
that is, 2O = {O′ | O′ ⊆ O}.

Though different MEUs (of an argument) in a class have different consequents, all
of their consequents invalidate the support. Next, we introduce a canonical undercut
to characterize such a common feature of all MEUs in a class.

Definition 5 Let O be an ontology and A be an argument. Given a sub-ontology �,
we say 〈�, �〉 is a canonical undercut if Argu(O, A, �) �= ∅.

Here we use � to express the existence of consequent of such a MEU. We use
UC(O, A) to denote the set of all canonical undercuts of A in O.

Intuitively, a canonical undercut represents all MEUs whose supports are identi-
cal. Note that different canonical undercuts have different supports.
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In Example 1, we use A∗i (1 ≤ i ≤ 14) to denote an argument 〈�i, �〉 where �i =
Sup(Ai). We find that A∗7 = A∗8 and A∗7 is a canonical undercut of both A5 and A6.
Both A∗5 and A∗6 are canonical undercuts of A7. A∗11 is a canonical undercut of A12

and A∗12 is a canonical undercut of A11.

Proposition 5 Let O be an ontology. For any argument A, the number of canonical
undercuts of A is f inite.

Proof Because all canonical undercuts are in form of 〈�, �〉 where � is a sub-
ontology of O. The number of sub-ontologies of a finite ontology O is finite.
Therefore, the number of canonical undercuts of A is finite. ��

To take advantage of finiteness of canonical undercuts, we develop a naive
algorithm to constructing canonical undercuts shown in Algorithm 1 where � stores
all sub-ontologies which invalidate the support of A and 
 stores all canonical
undercuts of A.

Algorithm 1 Naive algorithm for constructing canonical undercuts
1: procedure NACCUO, A
2: 2O : the power set of O
3: � = {}
4: 
 = {}
5: for each sub-ontology � ∈ 2O

6: it � ∪ Sup(A) is inconsistent or incoherent
7: � = � ∪ {�}
8: end if
9: end for

10: for each sub-ontology � ∈ �

11: if there exists no 	 ∈ � such that 	 ⊂ �

12: 
 = 
 ∪ {〈�,�〉}
13: end if
14: end for
15: return 


16: end procedure

Next result shows that Algorithm 1 is sound and complete.

Proposition 6 Let O be an ontology. For any argument A, we have CU(O, A) =
NACCU(O, A).

Proof Firstly, we show that Algorithm 1 is complete. For any Au ∈ CU(O, A), then
Sup(Au) ∪ Sup(A) is inconsistent or incoherent by Definition 2. Thus Sup(Au) ∈ �

in Algorithm 1. Because Au is the support of some MEU of A, there exists no other 	

such that 	 ⊂ Sup(Au) and 〈	,�〉 ∈ CU(O, A) by Definition 5. That is, there exists
no other 	 ∈ � such that 	 ⊂ Sup(Au) by Definition 4. Thus Sup(Au) ∈ 
.

Secondly, we show that Algorithm 1 is sound. For any 〈�, �〉 ∈ NACCU(O, A),
we need to show that 〈�, �〉 ∈ CU(O, A). Because 〈�, �〉 ∈ NACCU(O, A) we have
� ∈ 
 and � ∈ � in Algorithm 1. � ∈ � means that � ∪ Sup(A) is inconsistent or
incoherent. Thus there exists some undercut Au of A such that Sup(Au) = � by
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Proposition 1. Assume that Au is not a MEU of A. There exists a MEU A′u of A
such that Sup(A′u) ⊂ �. Because A′u is also an undercut of A, Sup(A′u) ∪ Sup(A)

is inconsistent or incoherent. That is, Sup(A′u) ∈ �. Thus we find a sub-ontology
Sup(A′u) ∈ � such that Sup(A′u) ⊂ � which contradicts � ∈ 
. ��

3.2 Argumentation framework in description logic ALC

In this subsection, we define argument trees by using canonical undercuts and then
introduce BH’s argumentation framework for DL ontologies.

An important target of Besnard and Hunter’s framework is providing a dialogue
mechanism in the shape of trees, called argument trees. An argument tree is a
tree, whose nodes are arguments and edges represent the “attack” relation between
arguments / nodes, formally defined as follows:

Definition 6 Let O be an ontology and A an argument in O. An argument tree of A
w.r.t. O is a tree where the nodes are arguments such that

1. the root is A;
2. for no node A′ with ancestor nodes A(1), . . . , A(n), is Sup(A′) a sub-ontology of

Sup(A(1)) ∪ . . . ∪ Sup(A(n));
3. the children nodes of a node A consist of all canonical undercuts of A, which

obeys Item 2.

Intuitively, Item 1 shows that an argument tree for an axiom starts an argument for
this axiom; Item 3 shows that the argument tree grows by adding canonical undercuts
of the current nodes as its children nodes recursively till termination; and Item 2
states that each newly added children should contain some new axioms not occurring
in its ancestors. In other words, when O ⊆ Sup(Aroot) ∪ Sup(A(1)) ∪ . . . ∪ Sup(A(n)),
argument trees will terminate its growing since O is finite. In this sense, Item 2
ensures the finite depth of argument trees.

As a direct result, argument trees are finite if it has a finite number of branches
and a finite depth.

Proposition 7 Any argument tree of an arbitrary argument w.r.t. a f inite ontology is
f inite.

Proof Let O be an ontology and A an argument in O. Since O is finite, the number
of sub-ontologies of O is finite. In an argument tree, no branch can be infinite by
Item 2 of Definition 6 (discussed above). Also, the number of canonical undercuts is
finite by Proposition 5. The branching factor in an argument tree is finite by Item 3
of Definition 6. ��

In particular, all argument trees w.r.t. consistent and coherent ontologies have a
distinguished feature.

Proposition 8 If an ontology O is consistent and coherent, then all argument trees
w.r.t. O have exactly one node.
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Proof Let A be a random argument in O. Assume there is an argument tree T of
A w.r.t. O which has two nodes in O ⇒ the child A′ of A (i.e., the root of T) is
a canonical undercut for A⇒ Sup(A′) ∪ Sup(A) ⊆ O is inconsistent or incoherent
which contradicts the fact that O is consistent and coherent. ��

Proposition 8 can be used to diagnose whether an ontology is consistent and
coherent.

To characterize ontology consistency and coherency, two axiom negations called
consistency-negation and coherency-negation are introduced in Flouris et al. (2006)
where their existence and decidability are proved.

Let φ be an axiom. An axiom is called the consistency-negation of φ, denoted by
¬φ if and only if

1. {φ,¬φ} is inconsistent;
2. There exist no other ψ such that ψ satisfies Item 1 and {ψ} |= {φ} but {φ} �|= {ψ}.
An axiom is called the coherency-negation of φ, denoted by −φ if and only if

1. {φ,¬φ} is incoherent;
2. There exist no other ψ such that ψ satisfies Item 1 and {ψ} |= {φ} but {φ} �|= {ψ}.

For instance (see Flouris et al. 2006), let us consider the consistency negation and
the coherence negation of an axiom C � D, where C and D are named concepts.

¬(C � D) = ∃(C � ¬D), −(C � D) = C � ¬D

where ∃(C � ¬D) is an existence axiom (see Horrocks and Patel-Schneider 2003),
which states there exists some instance of the concept C � ¬D, that is, for any
individual a, {C(a),¬D(a)} |= ∃(C � ¬D). Technically, we can treat existence axioms
as queries over ontologies. Note that, in any ontologies containing C � D and
C � ¬D, the concept C is unsatisfiable.

Note that undercuts are related to either ontology inconsistency or ontology
incoherency. For convenience, we directly use ∼ φ to denote either ¬φ or −φ. Note
that ∼ A(a) is ¬A(a) for any concept name A and any individual name a.

In Example 1, A5 is an argument for ¬(Penguin � Fly) and A12 is an argument
for −(Penguin � Fly). Thus both A5 and A12 are arguments for ∼ (Penguin � Fly).

Now we are ready to introduce our argumentation framework of some axioms in
a given ontology.

Definition 7 Let O be an ontology and φ an axiom. An argumentation framework of
φ w.r.t. O, defined as AF(O, φ), is a pair

〈ArgTree(O, φ), ArgTree(O,∼ φ)〉 (1)

where ArgTree(O, ψ) = {T | T is an argument tree of A w.r.t. O and A is an
argument for ψ w.r.t. O}.

We also say binary argumentation framework since it is a pair here.
An argument tree is for (against) an axiom φ if its root is an argument for φ (∼ φ).
Intuitively, ArgTree(O, φ) is a set of all argument trees for φ and ArgTree(O,∼

φ) is a set of all argument trees against φ.
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Fig. 1 Argument trees: T1
(left), T2 (middle), T3 (right)
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In Example 1, AF(O1, Fly(tweety)) = 〈{T1}, {T2, T3}〉 where T1 is an argument
tree for Fly(tweety) and T2, T3 are argument trees against Fly(tweety) (shown in
Fig. 1). AF(O1, Penguin � Fly) = 〈{T4}, {T5, T6}〉 where T4 is an argument tree
for Penguin � Fly and T5, T6 are argument trees against Penguin � Fly (shown in
Fig. 2).

Proposition 9 Let O be a consistent and coherent ontology and φ an axiom. If O |= φ

then

1. for each tree T ∈ ArgTree(O, φ), T has exactly one node (root);
2. ArgTree(O,∼ φ) = ∅.

Proof Because O is consistent and coherent, we have for any argument tree T
in ArgTree(O, φ), T has exactly one node by Proposition 8. Next, we only show
that ArgTree(O,∼ φ) of φ is the empty set. Suppose that ArgTree(O,∼ φ) �= ∅,
i.e., there exists an argument tree T for ∼ φ. Let A = 〈	,∼ φ〉 be the root of T
and A′ = 〈�, φ〉 the root of an argument tree T ′ in ArgTree(O, φ). Then 	 ∪�

is inconsistent or incoherent. So there exists a canonical undercut Au for φ by
Definition 5. Thus T ′ contains at least a child node A′ except for the root node, that
is, there exists an argument tree for φ that contains at least two nodes. It contradicts
the precondition. ��

Fig. 2 Argument trees: T4
(left), T5 (middle), T6 (right)
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4 Reasoning with inconsistent ontologies by using argumentation

A basic task in ontology reasoning is to decide whether an axiom is accepted by its
argumentation framework in a given ontology. As discussed earlier, it might be trivial
if ontologies are inconsistent or incoherent. In this section, based on our argumen-
tation framework, we propose a non-classical semantics to develop an inconsistency-
tolerant reasoning with ontologies with conflicts and obtain meaningful conclusions.

Compared with using models to characterize the classical semantics, we use the
(semantic) entailment to characterize our non-classical semantics. To do this, we first
define the acceptance of axioms in our semantic entailment.

Let A, A′ and A′′ be three arguments. If A is undercut by A′ and A′ is undercut by
A′′ then A′′ is called a defence for A. We define the “defend” relation as the transitive
closure of “being a defence”. An argument tree is said to be successful if and only if
every leaf defends the root node. An argument is called self-protected if there exists
a successful argument tree for it. An axiom is accepted if and only if there exists a
self-protected argument for it.

In Example 1, T2, T3, T5 are successful and T1, T4 are not successful. A5, A11

are self-protected while A7, A6 are not self-protected. Fly(tweety) is accepted and
Pegnuin � Fly is not accepted.

Next, based on the argumentation framework, we define an inference relation
between ontologies and axioms and, for easy understanding, we still say it an
entailment (relation) which is normally characterizing the inclusion relation between
models of two ontologies.

Definition 8 Let O be an ontology and φ an axiom. We say O argumentatively entails
(a-entails, for short) φ, denoted by O |=a φ, if there exists a successful argument tree
for φ. In this case, we call |=a argumentative entailment (relationship) (a-entailment,
for short).

Two basic inference problems, namely, instance checking and subsumption check-
ing in ontology reasoning under our semantics are correspondingly defined as
follows:

1. instance checking: given a concept C and an individual a, a is an argumentative
instance (a-instance, for short) of concept if O |=a C(a).

2. subsumption checking: a concept D argumentatively subsumes (a-subsumes, for
short) a concept C if O |=a C � D.

In Example 1, O1 |=a ¬Fly(tweety) and O1 |=a Penguin � ¬Fly.
In the following, we enumerate several good properties of argumentative entail-

ment.
If O is inconsistent and there exists an axiom φ such that O �|=p φ where |=p is an

entailment relation, then we say |=p is paraconsistent. It is well known that classical
entailment |= is not paraconsistent.

Theorem 1 The a-entailment |=a is paraconsistent.

In Example 1, O1 �|=a Fly(tweety) and O1 �|=a Penguin � Fly.
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Most existing semantics for paraconsistent reasoning in DLs are much weaker
than the classical semantics in this sense that there exists a consistent ontology O
and an axiom φ such that O |= φ (also called consistency preservation) but φ is not
entailed by O under the paraconsistent semantics. The following result shows that
the a-entailment does not have such shortcoming.

The following result shows that the a-entailment is consistency-preserving.

Theorem 2 Let O be a consistent and coherent ontology and φ an axiom. O |=a φ if
and only if O |= φ.

Proof Because O is consistent and coherent, O |= φ ⇔ the argumentation frame-
work 〈P, C〉 for φ whose each argument tree P �= ∅ has exactly one node and C is the
empty set by Proposition 9⇔ there exists a successful argument tree for φ because it
contains only one node⇔O |=a φ. ��

Theorem 2 ensures that the a-entailment over consistent ontologies preserves the
classical entailment. That is, our semantics is as the same as classical semantics in
dealing with consistent and coherent ontologies.

An entailment relation |=m is monotonic if O′ |=m φ implies O |=m φ for any
O′ ⊆ O; nonmonotonic otherwise. Another characteristic property of |=a is its non-
monotonic nature.

Theorem 3 The a-entailment |=a is nonmonotonic.

For instance, let O = ({A � B}, {A(a)}) and O′ = ({A � B}, {A(a),¬B(a)}). Ob-
viously, O ⊆ O′ and O |=a B(a) while O′ �|=a B(a).

While the argumentative semantics is nonmonotonic in general, it possesses a kind
of cautious monotonicity, which is usually referred to as splitting property (see Arieli
et al. 2011).

For instance, let O = ({� � A, A � ∀P.B, ∀P.B � ⊥, ∀R1.C � ∃R2.D},
{A(a),∀R1.C(b)}) be an ontology, O can be split into O = O1 ∪O2 where
O1 = ({∀R1.C � ∀R2.D}, {∀R1.C(b)}) and O2 = ({� � A, A � ∀P.B, ∀P.B �
⊥}, {A(a)}). Then, let φ = ∀R1.C(b), the problem of deciding O |=d, f φ can
be reduced to checking whether O1 |=d, f φ. Notice that O1 is consistent and
Sig(O1) ∩ Sig(O2) = ∅ where Sig(O) is a set of all symbols occurring in O. For
some non-monotonic semantics, these two conditions are sufficient to guarantee the
validity of the splitting property. However, it is not the case when O1 contains more
than one axiom.

Formally, we say O is split into O′ and O′′, denoted by O = O′ ⊕O′′, if (1) O =
O′ ∪O′′, and (2) Sig(O′) ∩ Sig(O′′) = ∅.

Theorem 4 Let O = O′ ⊕O′′ where O′ is consistent and coherent. If O′ |= φ then
O |=a φ for each axiom φ such that Sig(φ) ∩ Sig(O′′) = ∅.

Proof To prove that O |=a φ, we only need to show that there exists a successful
argument tree for φ in O. If O′ is consistent and coherent and O′ |= φ, then the
argumentation framework F of φ w.r.t. O′ is in form of 〈P, C〉 where all argument
trees for φ in P has exactly one node and C is empty by Proposition 9. Because



www.manaraa.com

J Intell Inf Syst (2013) 40:375–403 391

Sig(φ) ∩ Sig(O′′) = ∅, all argument trees for/against φ must not contain any symbol
in Sig(O′′). Then F is also the argumentation framework of φ w.r.t. O. That is, there
exists at least a successful argument tree for φ in O. ��

One advantage of the splitting property is that the paraconsistent reasoning in
ontology O can be localized into the classical reasoning in a consistent module of O,
which is usually smaller than the original O. Such a property can be very useful for a
highly distributed ontology system.

Moreover, our semantics inherits a unique property called justif iability of argu-
mentation theory (Dung 1995a; Besnard and Hunter 2001). Formally, an axiom φ is
justif iable in an ontology O if and only if there exists a self-protected argument for φ

but there exists no self-protected argument against φ.
All justifiable axioms in a given ontology can be characterized by the a-entailment.

Proposition 10 Let O be an ontology and φ an axiom. φ is justif iable in O if and only
if O |=a φ and O �|=a∼ φ.

Proof φ is justifiable in O⇔ O |=a φ and O �|=a∼ φ ⇔ φ is accepted and ∼ φ is not
accepted in O⇔ there exists a self-protected argument for φ but there exists no self-
protected argument against φ. ��

In Example 1,¬Fly(tweety) is justifiable in O1. Neither A(a) nor B(a) is justifiable
in the ontology ({A � B}, {A(a),¬B(a)}).

A semantics is multi-valued if the number of its truth values is greater than 2
(“true” and “false”) (Arieli et al. 2011).

To show that our semantics is multi-valued, we need to quantify binary argu-
mentation framework by introducing two quantification functions: categorizer and
accumulator.

The categorizer is a function, denoted by c, from the set of argument trees to {0, 1}
such that c(T) = 1 if and only if argument tree T is successful. In Fig. 1, c(T1) =
c(T4) = c(T6) = 0 and c(T2) = c(T3) = c(T5) = 1.

The categorization of a set of argument trees is the collection of their categorizer
values. The accumulator of an axiom φ is a function, denoted by a, from catego-
rizations to the set {(1, 1), (1, 0), (0, 1), (0, 0)}. Let 〈X, Y〉 be a categorization of
argumentation framework for an axiom φ, then a(〈X, Y〉) = (w(X), w(Y)) where
w(Z ) = 1 if and only if 1 ∈ Z .

Let O be an ontology and φ an axiom. If 〈X, Y〉 is a categorization of argumen-
tation framework for φ, then aO(φ) = (w(X), w(Y)) where w(Z ) = 1 if and only if
1 ∈ Z . If it is clear in the context, we abbreviate aO(φ) as a(φ).

In Example 1, a(Fly(tweety)) = (0, 1) since T2, T3 are successful but T1 is not
successful. a(Penguin � Fly) = (0, 1) since T5 is successful but T4 is not successful.

The following proposition shows the relationship between accumulator and ∼.

Proposition 11 Let O be an ontology. Assume that a(φ) = (i, j) where i, j ∈ {0, 1}. We
have

1. if i+ j = 1 then a(∼ φ) = ( j, i);
2. if i+ j = 0 or 2 then a(∼ φ) = (i, j).



www.manaraa.com

392 J Intell Inf Syst (2013) 40:375–403

Proof It directly follows from Definition 7, the definitions of consistency-negation,
coherency-negation and the definition of accumulator. ��

Proposition 11 provides a theoretical support for our repair operators presented
in the next section.

Based on accumulator, we then define a valuation function.

Definition 9 Let O be an ontology and φ an axiom. The argumentative valuation (a-
valuation, for short) is a function, denoted by va, from a set of axioms and assertions
to a set of four values {t,f,B,U}, defined as follows:

va(φ) =

⎧
⎪⎪⎨

⎪⎪⎩

B, if a(〈X, Y〉) = (1, 1);
t, if a(〈X, Y〉) = (1, 0);
f, if a(〈X, Y〉) = (0, 1);
U, if a(〈X, Y〉) = (0, 0).

where 〈X, Y〉 is a categorization of the argumentation framework of φ in O.

Intuitively speaking,

1. va(φ) =B means that there exists a successful argument tree for φ and a successful
argument tree for ∼ φ;

2. va(φ) =t means that there exists a successful argument tree for φ but no success-
ful argument tree for ∼ φ;

3. va(φ) =f means that there exists a successful argument tree for φ but no
successful argument tree for ∼ φ;

4. va(φ) =U means that there exists neither any successful argument tree for φ nor
any successful argument tree for ∼ φ.

The next result shows that there exists a close relation between the a-entailment
(|=a) and the argumentative valuation (va).

Theorem 5 Let O be an ontology and φ an axiom. Then the following propositions
are equivalent to each other:

1. O |=a φ;
2. va(φ) ∈ {B,t};
3. there exists an argument tree T for φ such that c(T) = 1.

Proof O |=a φ⇔ there exists a successful tree T of φ in O by Definition 8⇔ c(T) =
1 by the definitions of accumulators⇔ v(φ) ∈ {B, t} by the definition of categorizer
and valuation function. ��

In other words, our semantics is still four-valued.
For instance, let O = ({A � B}, {A(a),¬B(a)}) be an ontology, v(A(a)) =

v(B(a)) = U , that is, the answers to (query) A(a) and B(a) are unknown. Intuitively,
neither A(a) nor ¬A(a) is true in the ontology.

However, |=a does not satisfy the TBox-preserved property, that is, let O = (T ,A)

be an ontology, it does not always hold that O |=a φ if and only if O |=a φ. For
instance, in Example 1, O1 |=a Penguin � ¬Fly while T1 �|=a Penguin � ¬Fly. The
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reason is that all axioms are impartially treated so that axioms in the ABox still affect
reasoning with TBoxes.

In summary, instead of roughly either discarding or ignoring contradictory in-
formation in existing approaches to handling inconsistent ontologies, our scenario
based on argumentation framework cautiously treats contradictory information by
analyzing the internal relation between its semantics and the whole semantics of a
given ontology and then provides more reasonable answers.

5 Repairing ontologies with conflicts by using argumentation

Ontology engineers generally think that conflicts should be removed to maintain
consistency of ontologies. As a practical application of the Semantic Web, maintain-
ing consistency is an important task in ontology management. Because an ontology
contains two parts: TBox (collection of inner knowledge) and ABox (collection of
outer knowledge), there are three kinds of conflicts occurring in ontologies: the first
only occurring in TBox; the second only occurring in ABox and the third occurring
between TBox and ABox. Note that the second could be taken as the third with
empty TBox. There are some proposals to repair ontologies with the first (Kalyanpur
et al. 2006b; Meyer et al. 2006) and the third (Du and Shen 2008). The common idea
of them is based on maximal consistent or coherent subsets of ontologies in syntax.
In this section, we develop a novel semantic-based scenario to eliminate conflicts
by employing our argumentative entailment presented in the previous section. We
consider two kinds of conflicts (i.e., inconsistency and incoherency) occurring in
ontologies. Indeed, incoherency not only is taken as a kind of errors but also causes
inconsistency (see Kalyanpur et al. 2006b).

For instance, in Example 1, both T1 and A1 are consistent while the inconsistency
of O1 is caused by the incoherency of T1 since Penguin is an unsatisfiable concept
name in T1.

Inconsistency or incoherency of an ontology might be mainly caused by its over-
definition in ontology engineering. For instance, it clearly shows that two axioms A �
B and A � ¬B for defining concept A bring incoherence. A key idea of repairing
inconsistent or incoherent ontologies is removing redundant axioms.

In this section, we develop several novel operators based on argumentation
framework to repair incoherent or inconsistent ontologies.

5.1 Repairing description logic ontologies using argumentation

As discussed previously, there are four accumulators of our argumentation frame-
work for each axiom in a TBox. Note that our candidate repair operator is used to
maintain coherency of a TBox while our argumentative entailment is used to tolerate
conflicts. Because of this, our candidate operator needs more cautious consideration.

Definition 10 Let O be an ontology and S a set of axioms. An argumentation-based
repair operator (a-repair operator, for short) �a is defined as follows:

�a(O,S) = {φ ∈ S | aO(φ) = (1, 0)}.
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Intuitively speaking, for each axiom φ of �a(S,O), the a-valuation is “t” (true),
that is, there exists a successful argument tree for φ but no successful argument tree
for ∼ φ in O. We directly use �a(S) to denote �a(S,S).

In constructing repaired ontologies, we follow from two facts: (1) incoherence or
inconsistency of a TBox is mainly caused by itself; (2) inconsistency of an ABox w.r.t.
a coherent and consistent TBox is mainly caused by itself. Based on the above two
facts, we define a repaired ontology as follows.

Definition 11 Let O = (T ,A) be an ontology. An argumentatively repaired (a-
repaired) ontology of O, denoted by �a(O), is defined as follows:

�a(O) = (�a(T ),�a(Oa,A)).

where Oa = (�a(T ),A).

Intuitively, the repair contains two processes: the first is repairing the TBox and
the second is repairing the ABox w.r.t. the repaired TBox.

Note that �a(O) is always finite if O is finite. That is, this a-repair operator is well
defined. Moreover, Definition 11 provides one of the methods to repair inconsistent
or incoherent ontology via a-repair operator. In other words, we could develop
several methods of repairing by using a-repair operator. In addition, a-repaired
ontologies preserve the syntactic structure of their original ontologies.

The repair can distinguish the inconsistency caused by the incoherency of TBoxes
from other inconsistencies.

In Example 1, �a(T ) = {Bird � Fly, DegradedBird � ¬Fly, Swallow � Bird,
Penguin � ∃hasFood.Fish, Swallow � ¬Penguin} and �a(Oa,A1) = A1. We find
that the coherency of �a(T ) is obtained by removing two axioms: Penguin � Bird
and Penguin � ¬Fly which cause the incoherency of T1 together with Bird � Fly.

Example 2 Let O2 = (T2,A2) where TBox T = {A1 � A2, A2 � A4, A1 � A3,
A3 � A4, A1 � ¬A4} and A4 = {A1(a), A3(a),¬A4(a),¬A4(b)}. Then �a(O2) =
(�a(T2),�a(Oa

2,A4)) where �a(T4) = {A1 � A2, A2 � A4, A1 � A3, A3 � A4} and
�a(Oa

2,A2) = {A1(a), A3(a),¬A4(b)}. Note that the axiom A1 � ¬A4 and the as-
sertion ¬A4(a) are absent in the a-repaired ontology. It easily shows that �a(O2) is
coherent and consistent.

The a-repair operator has some good properties.

Theorem 6 Let O be an ontology. We have

1. �a(O) is coherent and consistent;
2. O = �a(O) if O is consistent and coherent;
3. if O = O′ ∪O′′ and Sig(O′) ∩ Sig(O′′) = ∅, then �a(O) = �a(O′) ∪ �a(O′′).

Proof

1. Based on the definition of accumulator and Definition 11, for any axiom φ ∈
�a(O), we have ∼ φ ∈ �a(O). Therefore, �a(O) is coherent and consistent.
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2. If O is consistent and coherent, then the argumentation framework of each
axiom has the form of 〈P, C〉 where P contains only one node and C is empty
by Proposition 8. That is a(φ) = (1, 0) for any axiom φ ∈ O. Thus O = �a(O).

3. If Sig(O′) ∩ Sig(O′′) = ∅, then Sig(�a(O′)) ∩ Sig(�a(O′′)) = ∅ since �a(O′) ⊆
O′ and �a(O′′) ⊆ O′′. Thus �a(O) = {φ ∈ O | a(φ) = (1, 0)} = {φ ∈ O′ ∪O′′ |
a(φ) = (1, 0)} = {φ ∈ O′ | a(φ) = (1, 0)} ∪ {φ ∈ O′′ | a(φ) = (1, 0)} = �a(O′) ∪
�a(O′′). ��

In Theorem 6, the first item states that our repair operator �a could maintain
consistency and coherency of ontologies; the second shows that the a-repaired
ontology of a coherent or consistent ontology is itself; the third tells that a-repair
operator satisfies the splitting property. Taking advantage of the splitting property,
we could realize modularized management of ontologies.

In addition, for any ontology, its a-repaired ontology is unique. In Example 2, the
result after repairing is only �a(O2).

In short, for an inconsistent or incoherent ontology, its a-repaired ontology is a
reasonable and suitable alternative one since all information which might conflict
with others is excluded from such an alternative ontology. Our repairing obeys the
important principle of justifiability compared with existing proposals of ontology
repair.

5.2 Approximatively repairing description logic ontologies using argumentation

Though the results of repairing ontologies based on our operator are justifiable by
removing redundant axioms from ontologies, some of those redundant axioms are
still valuable sometimes.

Example 3 Let O3 = (T3,A3) where T3 = {A � B, A � ¬B} and A3 =
{A(a),¬B(a), A(b), B(b)}. We have �a(T3) = ∅. Though there is no more evidence
which is more reliable than axiom A � B and axiom A � ¬B, the candidate result
either {A � B} or {A � B} might be sometimes better than �a(T3) which could not
provide any information.

Next, we develop two approximative operators to obtain more meaningful results
by relaxing some restrictions of a-repair operator.

Definition 12 Let O = (T ,A) be an ontology. Two approximative a-repair operators
�1

a and �2
a are defined as follows:

1. �1
a(O,S) = {φ ∈ S | aO(φ) = (1, 0)} ∪ {∼ φ ∈ S | aO(φ) = (0, 1)}.

2. �2
a(O,S) = {φ ∈ S | aO(φ) = (1, 0)} by adding φ ∈ S with aO(φ) = (0, 0) in the

following way:

– if φ,∼ φ ∈ S , then one of φ and ∼ φ is added;
– otherwise, φ is directly added.
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�1
a(O) and �2

a(O) are analogously defined as in Definition 11.

Intuitively, two new operators �1
a and �2

a could be taken as extensions of the a-
repair operator �a via two selection strategies. The operator �1

a could be used to
capture those axioms which are testified to be justifiable and the operator �2

a could
be used to capture the maximality of consistency and coherency.

Corresponding to the approximative a-repair operators �1
a and �2

a, we say opera-
tor �a the normal repair operator.

Theorem 7 Let O be an ontology. We have

1. �1
a(O) and �2

a(O) are consistent and coherent;
2. if O is consistent and coherent, then �1

a(O) = �2
a(O) = O;

3. if O = O′ ⊕O′′ and Sig(O′) ∩ Sig(O′′) = ∅, �1
a(O) = �1

a(O′)⊕�1
a(O′′) and

�2
a(O) = �2

a(O′)⊕�2
a(O′′) where O′ = (T ′,A′), O′′ = (T ′′,A′′) and (T ′,A′)⊕

(T ′′,A′′) = (T ′ ∪ T ′′,A′ ∪A′′).

Proof This proof is analogous to the proof of Theorem 6. ��

In the following proposition, we discuss the relationships between two approxi-
mative operators (�1

a and �2
a) and a-repair operator (�a).

Proposition 12 Let O = (T ,A) be an ontology. We have (1)�a(O) ⊆ �1
a(O); and (2)

�a(O) ⊆ �2
a(O) ⊆ O.

Note that the results by using operators �a and �1
a are unique while the results by

using the operator �2
a are often multiple.

In Example 3, �2
a(T ) has two possible results as follows: {A � B} or {A � ¬B}.

Then �2
a(O) has four possible results as follows: ({A � B}, {A(a), A(b), B(b)}),

({A � B}, {¬B(a), A(b), B(b)}), ({A � ¬B}, {A(a),¬B(a), A(b)}) and ({A � ¬B},
{A(a), ¬B(a), B(b)}).

Besides, those repaired ontologies by using a-repair operators possibly contain
some existence axioms in form of ∃(C � ¬D) (see Horrocks and Patel-Schneider
2003) because of the consistency-negation of concept inclusions in form of C � D.
Technically, we argue that it is feasible that the forgetting and uniform interpolation
(Konev et al. 2009) can be employed to recover C � E (if necessary) when D � E is
removed from {C � D, D � E}.

6 Examples: two practical ontologies

Two popular ontologies, namely, badFood ontology and buggyPolicy ontology
(Kalyanpur et al. 2006a), contain unsatisfiable concepts which are caused by mod-
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eling error and overdefining respectively. However, the problems of finding all
unsatisfiable concepts and those errors (axioms) which cause unsatisfiability of DL
concepts in a given ontology are still open.

badFood ontology The badFood ontology, written by Ob , contains 26 axioms ϕi as
follows:

ϕ1 : ∃ eats.� � Person
ϕ2 : � � ∀ eats.Food
ϕ3 : LactoVegetarian � ∀ eats.LactoVegetarianFood
ϕ4 : Omnivore ≡ Person � (∃ eats.Meat)
ϕ5 : OvoLactoVegetarian � ∀ eats.OvoLactoVegetarianFood
ϕ6 : OvoVegetarian � ∀ eats.OvoVegetarianFood
ϕ7 : Vegan � ∀ eats.VeganFood
ϕ8 : Vegetarian � ∀ eats.VegetarianFood
ϕ9 : Dairy � ¬Eggs

ϕ10 : DairyandEggs ≡ Dairy � Eggs
ϕ11 : OvoVegetarianFood ≡ Food � (¬(Dairy � Meat))
ϕ12 : VeganFood ≡ Food � (¬(DairyandEggs � Meat))
ϕ13 : Seaf ood � Meat
ϕ14 : Seaf ood � ¬VegetarianFood
ϕ15 : Meat � Food
ϕ16 : VegetarianFood ≡ Food � ¬Meat
ϕ17 : LactoVegetarianFood � VegetarianFood
ϕ18 : LactoVegetarianFood � ¬OvoVegetarianFood
ϕ19 : OvoLactoVegetarianFood � LactoVegetarianFood
ϕ20 : OvoLactoVegetarian � Vegetarian
ϕ21 : LactoVegetarian � OvoLactoVegetarian
ϕ22 : OvoVegetarian � OvoLactoVegetarian
ϕ23 : Vegan � Vegetarian
ϕ24 : Vegetarian � Person
ϕ25 : OvoVegetarianFood � VegetarianFood
ϕ26 : OvoVegetarianFood � OvoLactoVegetarianFood

Note that OvoVegetarian � ∀eats.¬OvoVegetarianFood, which conflicts ϕ6, can
be inferred from {ϕ5, ϕ18, ϕ22}. Thus the concept OvoVegetarian is unsatisfiable.
Then the badFood ontology is incoherent which unavoidably causes the inconsis-
tency together with some assertions (external knowledge).

We add axioms ϕ27 = OvoVegetarian(person), ϕ28 = eats(person, f ood) where
preson and f ood are two individuals, in Ob and then we obtain a new ontol-
ogy denoted by O∗b . It is not hard to conclude that O∗b is inconsistent because
OvoVegetarianFood( f ood) and ¬OvoVegetarianFood( f ood) conflict with each
other.
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Table 1 Reasoning results over badFood ontology

Axiom: φ / ∼ φ (|=4, �→) (|=4, �) (|=4,→) |=Q |=c |=b |=a

ϕ5/ ∼ ϕ5 yes/no yes/no yes/yes yes/no no/no yes/no yes/no
ϕ6/ ∼ ϕ6 yes/no yes/yes yes/yes yes/no no/no yes/no yes/yes
ϕ18/ ∼ ϕ18 yes/no yes/yes yes/yes yes/no no/no yes/no yes/no
ϕ19/ ∼ ϕ19 yes/no yes/no yes/yes yes/no no/no yes/no yes/no
ϕ22/ ∼ ϕ22 yes/no yes/no yes/yes yes/no no/no yes/no yes/no
ϕ26/ ∼ ϕ26 yes/no yes/no yes/yes yes/no yes/no yes/no yes/no
ϕ27/ ∼ ϕ27 yes/no yes/no yes/yes yes/no no/no yes/yes no/no
α1/ ∼ α1 no/no yes/yes yes/yes yes/ yes no/no yes/yes no/yes
α2/ ∼ α2 no/no yes/no yes/yes yes/no no/no yes/yes yes/no
α3/ ∼ α3 no/no yes/no yes/yes yes/no no/no yes/yes yes/no
α4/ ∼ α4 yes/no yes/no yes/yes yes/no yes/no yes/no yes/no
α5/ ∼ α5 yes/no yes/no yes/yes yes/no yes/no yes/no yes/no
α6/ ∼ α6 no/no yes/no yes/yes yes/no no/no yes/yes yes/no

Now, we additionally consider some interesting queries as follows:

α1 : OvoVegetarianFood( f ood)

α2 : LactoVegetarianFood( f ood)

α3 : OvoLactoVegetarianFood( f ood)

α4 : VegetarianFood( f ood)

α5 : Food( f ood)

α6 : OvoLactoVegetarian(person)

Note that under non-classical semantics, though the answer of a query is either
“yes” or “no”, it does not mean that its negation has the contrary answer since it
is possibly assigned as other value (e.g., “unknown”) besides “true” or “false”. To
refine answers, we also consider a query and its negation (α / ∼ α) together. The
experimental results are shown in Table 1.

Notations:

– (|=4, �→): four-valued entailment under material implication (Ma et al. 2007);
– (|=4, �): four-valued entailment under internal implication (Ma et al. 2007);
– (|=4,→): four-valued entailment under strong implication (Ma et al. 2007);
– |=Q: quasi-classical entailment (Zhang et al. 2009; Zhang and Lin 2012);
– |=c: cautious entailment: O |=c ϕ if for each maximal consistent sub-ontology O′

of O, we have O′ |= ϕ (Huang et al. 2005);
– |=b : brave entailment: O |=b ϕ if there exists some maximal consistent sub-

ontology O′ of O such that O′ |= ϕ (Huang et al. 2005).

Moreover, we can also compute the repaired ontologies of the badFood ontology
by using argumentation as follows: �a(O∗b ) = O∗b −{ϕ6, ϕ27}; �1

a(Ob ) = �a(O∗b ) and
�2

a(Ob ) = �1
a(O∗b ) = �a(O∗b ) ∪{∼ ϕ27}.

As a result, OvoVegetarianFood is satisfiable and these repaired ontologies are
coherent and consistent.
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buggyPolicy ontology The buggyPolicy ontology, written by Op, contains 19 axioms
ψi as follows:

ψ1 : ∃testProperty.� � Reliable
ψ2 : ExactlyOneExamplePolicy � Policy
ψ3 : GeneralReliabilityKerberosPolicy � Policy
ψ4 : GeneralReliabilityUserPolicy ≡ Reliable �UserToken
ψ5 : GeneralReliabilityUserPolicy � Policy
ψ6 : GeneralReliabilityUserPolicy � ¬Messaging
ψ7 : X509 � SecurityTokenType
ψ8 : IncoherentPolicy � Policy
ψ9 : Kerberos � SecurityTokenType

ψ10 : Kerberos � ¬Messaging
ψ11 : Reliable � Messaging
ψ12 : RetryOnFailureUserPolicy � Policy
ψ13 : RetryUntilSucceedUserPolicy � Policy
ψ14 : RetryOnFailure � Reliable
ψ15 : RetryUntilSucceed � Reliable
ψ16 : UserToken � SecurityTokenType
ψ17 : RetryOnFailureUserPolicy ≡ RetryOnFailure �UserToken
ψ18 : RetryUntilSucceedUserPolicy ≡ RetryUntilSucceed �UserToken
ψ19 : IncoherentPolicy ≡ RetryOnFailureUserPolicy�

RetryUntilSucceedUserPolicy

Note that GeneralReliabilityUserPolicy � Messaging can be inferred from {ψ4,
ψ11}, which conflicts with ψ6. Thus GeneralReliabilityUserPolicy is unsatisfiable.

Now, we add two axioms ψ20 = GeneralReliabilityUserPolicy(id) and ψ21 =
IncoherentPolicy(id), where id is an individual, in Op and then we obtain a new
ontology denoted by O∗p. It is not hard to conclude that O∗p is inconsistent because
Messaging(id) and ¬Messaging(id) conflict with each other.

Now, we additionally consider some interesting queries and experimental results
are shown in Table 2.

β1 : Messaging(id) β2 : Reliable(id)

β3 : Policy(id) β4 : RetryUntilSucceed(id)

Besides, we can also compute the repaired ontologies of the buggyPolicy ontology
by using argumentation as follows: �a(O∗p) = Op − {ψ5, ψ20}; �1

a(O∗p) = �a(O∗p) ∪
{∼ ψ5} and �2

a(O∗p) = �a(O∗p) ∪ {∼ ψ5,∼ ψ20}.
Table 2 Reasoning results over buggyPolicy ontology

Axiom: φ/∼ φ (|=4, �→) (|=4, �) (|=4,→) |=Q |=c |=b |=a

ψ4/ ∼ ψ4 yes/no yes/no yes/yes yes/no no/no yes/no yes/no
ψ6/ ∼ ψ6 yes/no yes/yes yes/yes yes/no no/no yes/no no/yes
ψ11/∼ ψ11 yes/no yes/yes yes/yes yes/no no/no yes/no yes/no
ψ20/∼ ψ20 yes/no yes/no yes/yes yes/no no /no yes/yes no/no
ψ21/∼ ψ21 yes/no yes/no yes/yes yes/no yes/no yes/no yes/no
β1/∼ β1 no/no yes/yes yes/yes yes/yes no/no yes/yes yes/no
β2/∼ β2 no/ no yes/no yes/yes yes/no yes/no yes/yes yes/no
β3/∼ β3 yes/no yes/no yes/yes yes/no yes/no yes/no yes/no
β4/∼ β4 yes/no yes/no yes/yes yes/no yes/no yes/yes yes/no
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As a result, GeneralReliabilityUserPolicy is satisfiable and these repaired ontolo-
gies are coherent and consistent.

Experiment evaluations Based on the experiment results in Tables 1 and 2, we have
experiment conclusions:

– |=a brings reasonable and meaningful answers since |=a can evaluate those
axioms which are possibly treated as contradictory in depth. In the badFood
ontology, O∗b |=a∼ α1 but O∗b �|=a α1 while the answer to α1 is the same as that to
∼ α1 in other entailments. In the buggyPolicy ontology, O∗p |=a β1 but O∗p �|=a∼
β1 while the answer to β1 is the same as that of ∼ β1 in other entailments.

– The inference power of |=a is between |=c and |=b . Here we say |=x has stronger
inference power than |=y if O |=y φ implies O |=x φ for any O and φ. |=b is
strictly stronger than |=a and |=a is strictly stronger than |=c. In the badFood
ontology, O∗b �|=a ϕ27 while O∗b |=b ϕ27. Moreover, O∗a |=a α2 while O∗b �|=c α2. In
the buggyPolicy ontology, O∗p �|=a ψ20 while O∗p |=b ψ20. Moreover, O∗p |=a ψ4

while O∗p �|=c ψ4.
– |=a can be used to repair ontologies. |=a can reject some axioms of an ontology,

which cause inconsistency or incoherency. However both |=4 and |=Q protect all
axioms of O∗b (i.e., all axioms can be inferred under their semantics). As a result,
the argumentative entailment can be used to repair ontologies. In the badFood
ontology, O∗b �|=a ϕ27 and O∗b �|=a∼ ϕ27. In the buggyPolicy ontology, O∗p �|=a ψ6

and O∗b |=a∼ ψ6. Besides, O∗p �|=a ψ20 and O∗b �|=a∼ ψ20.

7 Related works

The issues of DL ontology reasoning and management are important in the Semantic
Web. Recently, some approaches to reasoning with inconsistent DL ontologies by
using argumentation are reported in several research proposals (Gómez et al. 2008,
2010; Black et al. 2009). Compared with paraconsistent approaches which employ
some functions to determine which consistent subsets of an inconsistent ontology
should be considered in the reasoning process (Schlobach and Cornet 2003; Huang
et al. 2005), the set of warranted arguments is considered as the valid consequence
in reasoning by using argumentation (see Gómez et al. 2008). Compared with multi-
valued semantics of ontologies (Ma et al. 2007; Odintsov and Wansing 2008; Zhang
et al. 2009, 2010; Zhang and Lin 2012), reasoning by using argumentation satisfies
some good properties such as nonmonotonicity and consistency-preserving.

In Gómez et al. (2008, 2010), the Dung’s argumentation framework is employed to
reason with inconsistent DL ontologies. This argumentative approach starts a trans-
formation, which is presented by Grosof et al. (2003) to translate DL axioms into
rules in description logic programs (DLP) and then introduce defeasible semantics
for DLP to defeasible logic programs (DeLP). Thus the problem about querying
over DL ontologies is reduced to the problem about querying the corresponding
ontologies in DeLP. The inconsistency-tolerant reasoning could be realized via
the defeasible semantics of logic programs by using the dialogue mechanism of
argumentation. There are at least two differences between this approach (DeLP)
and our approach.
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– The first difference is in handling expressive DLs. DeLP can not handle general
DLs such as ALC since only axioms in Horn-clause logics (the intersection
between DL and Horn logic programs) can be translated into rules in DLP (see
Grosof et al. 2003; Gómez et al. 2008, 2010). For instance, DeLP does not support
disjunctions in the head of rules (Gómez et al. 2008, 2010). Moreover, some DL
axioms can not be translated into rules in DLP such as A � ∃R.B and ∀R.A � B
(see Grosof et al. 2003). Because our approach directly handles DL ontologies
without those restriction of the transform, we can handle general DLs such as
ALC and we argue that our scenario would be technically feasible for more
expressive DLs. Additionally, our approach handles incoherent ontologies.

– The second difference is in handling mechanism. DeLP is based on Dung’s
argumentation framework (a graph-based structure) (Dung 1995b) while our
framework is built on BH’s framework (a tree-based structure) (Besnard and
Hunter 2001). Semantically, each axiom in DeLP has one of the two values
(“true” and “false”) while our semantics is multi-valued (see Theorem 5).
Additionally, our semantics does not bring possible conflicts between open world
semantics in DLs and closed world semantics (LP).

In Black et al. (2009), the BH’s argumentation framework is applied to reason
with multiple ontologies. Consider two DL ontologies which (possibly) contradicts
to each other, and they are taken as two agents. Queries over the two ontologies will
be answered by using negotiation of the two agents. Though both this approach and
our approach are employing BH’s argumentation framework, there are at least two
differences between this approach and our approach.

– The first difference is in handling objects. Because this approach is proposed to
querying over multiple ontologies where each ontology should be coherent and
consistent, it is not suitable for paraconsistent reasoning with a single incoherent
or inconsistent ontology.

– The second difference is in reasoning states. This semantics implicitly presented
is based on three values since the answer to a query has three states, namely, true,
false and unknown while our semantics is based on four values.

There are some syntax-based and model-based approaches to repairing DL on-
tologies with maintaining coherency or consistency. On the one hand, those syntax-
based methods based on consistent subsets (Schlobach 2005; Meyer et al. 2006;
Kalyanpur et al. 2006b; Du and Shen 2008) are difficult to keep semantics closer
to classical semantics. On the other hand, those model-based approaches (Qi and Du
2009; Ji et al. 2009; Wang et al. 2010) are hard to maintaing the syntactic structure
so that their repaired ontologies might be in short of readability. Moreover, those
revising approaches (Qi and Du 2009; Wang et al. 2010) are not suitable for repairing
single ontology but two ontologies. Compared with those existing approaches, we
propose a justifiable mechanism to repair ontologies. Within it, we give consideration
to both semantic closeness and syntactical readability. Moreover, our proposal could
handle incoherency and inconsistency of general DL ontologies in a unified way.
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8 Conclusion and the future work

In this paper, we have presented an argumentation framework to handle inconsis-
tent/incoherent DL ontologies. Within this framework, we can reason with tolerating
inconsistent knowledge in a justifiable way. Moreover, we can also maintain the
coherency and consistency of ontologies again by using some repairing operators
developed under this framework: one normal operator is developed to compute the
repaired ontologies with keeping justifiability; and two approximative operators are
presented to enrich the normal operator by adding much more information. The
novel approach not only would provide an alternative scenario for DL ontology
management and reasoning with giving consideration to both semantics and syntax
but also might enlighten some potential proposals in merging DL ontologies which
is still an open problem. The basic problem of implementing our proposed reasoning
is searching and generating arguments. A naive approach to generating arguments
of an axiom in a DL ontology is applying existing DL reasoners Sirin et al. (2007)
to checking all subsets of this ontology. However, it would be low-efficient because
the support of an argument is generally computed in exponential times. Finding
an efficient approach to generating arguments in DL ontologies and then finally
implementing a system to serve the proposed reasoning will be considered as our
future work.
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